Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Microbiol ; 14: 1136386, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2282983

RESUMEN

Introduction: Coronavirus disease 2019 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Influential variants and mutants of this virus continue to emerge, and more effective virus-related information is urgently required for identifying and predicting new mutants. According to earlier reports, synonymous substitutions were considered phenotypically silent; thus, such mutations were frequently ignored in studies of viral mutations because they did not directly cause amino acid changes. However, recent studies have shown that synonymous substitutions are not completely silent, and their patterns and potential functional correlations should thus be delineated for better control of the pandemic. Methods: In this study, we estimated the synonymous evolutionary rate (SER) across the SARS-CoV-2 genome and used it to infer the relationship between the viral RNA and host protein. We also assessed the patterns of characteristic mutations found in different viral lineages. Results: We found that the SER varies across the genome and that the variation is primarily influenced by codon-related factors. Moreover, the conserved motifs identified based on the SER were found to be related to host RNA transport and regulation. Importantly, the majority of the existing fixed-characteristic mutations for five important virus lineages (Alpha, Beta, Gamma, Delta, and Omicron) were significantly enriched in partially constrained regions. Discussion: Taken together, our results provide unique information on the evolutionary and functional dynamics of SARS-CoV-2 based on synonymous mutations and offer potentially useful information for better control of the SARS-CoV-2 pandemic.

2.
International journal of general medicine ; 16:425-434, 2023.
Artículo en Inglés | EuropePMC | ID: covidwho-2236824

RESUMEN

Background New HIV (Human immune deficiency virus) infections are continuously increasing in China and it remains a huge challenge to blood donation. As access to health services has affected by COVID-19 (Corona virus disease 2019) pandemic, a drop in new diagnoses (especially HIV) was observed worldwide. Methods During 2013–2021, 735,247 specimens from unpaid blood donors collected by Shenzhen Blood Center underwent ELISA (Enzyme -linked immunosorbent assay) and NAT (Nucleic acid test). Samples with reactivity results were sent to the Shenzhen Center for Disease Control and Prevention for WB (Western blot). All data were statistically analyzed by the Chi-Square test. Results From 2013 to 2021, the prevalence of HIV among male blood donors was higher than in females (P < 0.01). During the COVID-19 pandemic, the prevalence of HIV among repeat blood donors decreased significantly compared to 2019 (P < 0.05), and the characteristics of blood donors changed in 2020 compared to 2019 and 2021. Conclusion The high proportion of female blood donors would help prevent HIV from getting into the blood supply. The COVID-19 pandemic affected the demographics of blood donors as well as the prevalence of HIV among repeat blood donors. An increased number of repeat blood donors can help decrease the risk of HIV transfusion transmission during the epidemic.

3.
Front Immunol ; 13: 997851, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2115356

RESUMEN

The immune system is highly networked and complex, which is continuously changing as encountering old and new pathogens. However, reductionism-based researches do not give a systematic understanding of the molecular mechanism of the immune response and viral pathogenesis. Here, we present HUMPPI-2022, a high-quality human protein-protein interaction (PPI) network, containing > 11,000 protein-coding genes with > 78,000 interactions. The network topology and functional characteristics analyses of the immune-related genes (IRGs) reveal that IRGs are mostly located in the center of the network and link genes of diverse biological processes, which may reflect the gene pleiotropy phenomenon. Moreover, the virus-human interactions reveal that pan-viral targets are mostly hubs, located in the center of the network and enriched in fundamental biological processes, but not for coronavirus. Finally, gene age effect was analyzed from the view of the host network for IRGs and virally-targeted genes (VTGs) during evolution, with IRGs gradually became hubs and integrated into host network through bridging functionally differentiated modules. Briefly, HUMPPI-2022 serves as a valuable resource for gaining a better understanding of the composition and evolution of human immune system, as well as the pathogenesis of viruses.


Asunto(s)
Virus , Humanos , Virus/genética , Mapas de Interacción de Proteínas , Sistema Inmunológico
4.
BMC Infect Dis ; 22(1): 331, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1775315

RESUMEN

BACKGROUND: A range of strict nonpharmaceutical interventions (NPIs) were implemented in many countries to combat the coronavirus 2019 (COVID-19) pandemic. These NPIs may also be effective at controlling seasonal influenza virus infections, as influenza viruses have the same transmission path as severe acute respiratory syndrome coronavirus 2. The aim of this study was to evaluate the effects of different NPIs on the control of seasonal influenza. METHODS: Data for 14 NPIs implemented in 33 countries and the corresponding influenza virological surveillance data were collected. The influenza suppression index was calculated as the difference between the influenza positivity rate during its period of decline from 2019 to 2020 and during the influenza epidemic seasons in the previous 9 years. A machine learning model was developed using an extreme gradient boosting tree regressor to fit the NPI and influenza suppression index data. The SHapley Additive exPlanations tool was used to characterize the NPIs that suppressed the transmission of influenza. RESULTS: Of all NPIs tested, gathering limitations had the greatest contribution (37.60%) to suppressing influenza transmission during the 2019-2020 influenza season. The three most effective NPIs were gathering limitations, international travel restrictions, and school closures. For these three NPIs, their intensity threshold required to generate an effect were restrictions on the size of gatherings less than 1000 people, ban of travel to all regions or total border closures, and closing only some categories of schools, respectively. There was a strong positive interaction effect between mask-wearing requirements and gathering limitations, whereas merely implementing a mask-wearing requirement, and not other NPIs, diluted the effectiveness of mask-wearing requirements at suppressing influenza transmission. CONCLUSIONS: Gathering limitations, ban of travel to all regions or total border closures, and closing some levels of schools were found to be the most effective NPIs at suppressing influenza transmission. It is recommended that the mask-wearing requirement be combined with gathering limitations and other NPIs. Our findings could facilitate the precise control of future influenza epidemics and other potential pandemics.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Pandemias/prevención & control , Estaciones del Año
5.
Emerg Microbes Infect ; 10(1): 1002-1015, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1231006

RESUMEN

ABSTRACTCOVID-19 vaccines are being developed urgently worldwide. Here, we constructed two adenovirus vectored COVID-19 vaccine candidates of Sad23L-nCoV-S and Ad49L-nCoV-S carrying the full-length gene of SARS-CoV-2 spike protein. The immunogenicity of two vaccines was individually evaluated in mice. Specific immune responses were observed by priming in a dose-dependent manner, and stronger responses were obtained by boosting. Furthermore, five rhesus macaques were primed with 5 × 109 PFU Sad23L-nCoV-S, followed by boosting with 5 × 109 PFU Ad49L-nCoV-S at 4-week interval. Both mice and macaques well tolerated the vaccine inoculations without detectable clinical or pathologic changes. In macaques, prime-boost regimen induced high titers of 103.16 anti-S, 102.75 anti-RBD binding antibody and 102.38 pseudovirus neutralizing antibody (pNAb) at 2 months, while pNAb decreased gradually to 101.45 at 7 months post-priming. Robust T-cell response of IFN-γ (712.6 SFCs/106 cells), IL-2 (334 SFCs/106 cells) and intracellular IFN-γ in CD4+/CD8+ T cell (0.39%/0.55%) to S peptides were detected in vaccinated macaques. It was concluded that prime-boost immunization with Sad23L-nCoV-S and Ad49L-nCoV-S can safely elicit strong immunity in animals in preparation of clinical phase 1/2 trials.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunización Secundaria , SARS-CoV-2/inmunología , Adenoviridae/genética , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/efectos adversos , Femenino , Vectores Genéticos , Células HEK293 , Humanos , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T/inmunología
6.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1196979

RESUMEN

The 2019 novel coronavirus (SARS-CoV-2) has spread rapidly worldwide and was declared a pandemic by the WHO in March 2020. The evolution of SARS-CoV-2, either in its natural reservoir or in the human population, is still unclear, but this knowledge is essential for effective prevention and control. We propose a new framework to systematically identify recombination events, excluding those due to noise and convergent evolution. We found that several recombination events occurred for SARS-CoV-2 before its transfer to humans, including a more recent recombination event in the receptor-binding domain. We also constructed a probabilistic mutation network to explore the diversity and evolution of SARS-CoV-2 after human infection. Clustering results show that the novel coronavirus has diverged into several clusters that cocirculate over time in various regions and that several mutations across the genome are fixed during transmission throughout the human population, including D614G in the S gene and two accompanied mutations in ORF1ab. Together, these findings suggest that SARS-CoV-2 experienced a complicated evolution process in the natural environment and point to its continuous adaptation to humans. The new framework proposed in this study can help our understanding of and response to other emerging pathogens.


Asunto(s)
Evolución Molecular , Recombinación Genética , SARS-CoV-2/genética , COVID-19/virología , Humanos , Filogenia , Reproducibilidad de los Resultados
7.
Nat Commun ; 12(1): 1383, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1114711

RESUMEN

In this study, we investigate the seroprevalence of SARS-CoV-2 antibodies among blood donors in the cities of Wuhan, Shenzhen, and Shijiazhuang in China. From January to April 2020, 38,144 healthy blood donors in the three cities were tested for total antibody against SARS-CoV-2 followed by pseudotype SARS-CoV-2 neutralization tests, IgG, and IgM antibody testing. Finally, a total of 398 donors were confirmed positive. The age- and sex-standardized SARS-CoV-2 seroprevalence among 18-60 year-old adults (18-65 year-old in Shenzhen) was 2.66% (95% CI: 2.24%-3.07%) in Wuhan, 0.033% (95% CI: 0.0029%-0.267%) in Shenzhen, and 0.0028% (95% CI: 0.0001%-0.158%) in Shijiazhuang, respectively. Female sex and older-age were identified to be independent risk factors for SARS-CoV-2 seropositivity among blood donors in Wuhan. As most of the population of China remained uninfected during the early wave of the COVID-19 pandemic, effective public health measures are still certainly required to block viral spread before a vaccine is widely available.


Asunto(s)
SARS-CoV-2/patogenicidad , Anticuerpos Antivirales/sangre , Donantes de Sangre/estadística & datos numéricos , COVID-19/sangre , COVID-19/epidemiología , COVID-19/inmunología , China/epidemiología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Pruebas de Neutralización , Prevalencia , Factores de Riesgo , SARS-CoV-2/inmunología
8.
Viruses ; 13(2)2021 02 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1090282

RESUMEN

With the rapid global spread of the Coronavirus Disease 2019 (COVID-19) pandemic, a safe and effective vaccine against human coronaviruses (HCoVs) is believed to be a top priority in the field of public health. Due to the frequent outbreaks of different HCoVs, the development of a pan-HCoVs vaccine is of great value to biomedical science. The antigen design is a key prerequisite for vaccine efficacy, and we therefore developed a novel antigen with broad coverage based on the genetic algorithm of mosaic strategy. The designed antigen has a potentially broad coverage of conserved cytotoxic T lymphocyte (CTL) epitopes to the greatest extent, including the existing epitopes from all reported HCoV sequences (HCoV-NL63, HCoV-229E, HCoV-OC43, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2). This novel antigen is expected to induce strong CTL responses with broad coverage by targeting conserved epitopes against multiple coronaviruses.


Asunto(s)
Infecciones por Coronavirus/prevención & control , Epítopos de Linfocito T/inmunología , Proteínas Virales/inmunología , Vacunas Virales/inmunología , Humanos , Pandemias , Linfocitos T Citotóxicos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA